
Type Inference 101

Sergey Vinokurov

serg.foo@gmail.com, @5ergv

2016-11-26



Introduction

I Types

I Types and programming

I Why type inference

I The Damas-Hindley-Milner algorithm - implementation, why
it’s still cool and not scary at all



Types

Initially introduced by Bertrand Russel in Principia Mathematica to
constrain sets and prohibit paradoxical sets.

Famous Russel’s paradox: set of all sets that don’t contain
themselves, Y = {X |X * X}

Does it contain itself or not? Which one is true: Y ⊆ Y or
Y * Y ?

Neither



Types

Initially introduced by Bertrand Russel in Principia Mathematica to
constrain sets and prohibit paradoxical sets.

Famous Russel’s paradox: set of all sets that don’t contain
themselves, Y = {X |X * X}

Does it contain itself or not? Which one is true: Y ⊆ Y or
Y * Y ?

Neither



Types

Initially introduced by Bertrand Russel in Principia Mathematica to
constrain sets and prohibit paradoxical sets.

Famous Russel’s paradox: set of all sets that don’t contain
themselves, Y = {X |X * X}

Does it contain itself or not? Which one is true: Y ⊆ Y or
Y * Y ?

Neither



Types

Initially introduced by Bertrand Russel in Principia Mathematica to
constrain sets and prohibit paradoxical sets.

Famous Russel’s paradox: set of all sets that don’t contain
themselves, Y = {X |X * X}

Does it contain itself or not? Which one is true: Y ⊆ Y or
Y * Y ?

Neither



Types and programming

But we’re interested in software development for the time being.

I Can types help with program development? How?

I Can we get similar betefits using other tools?

Yes, types can help with development of programs. They bring
machine-checked guarantees that ensure consistency of the
program and eliminate certain classes of bugs.

‘Well-typed programs cannot “go wrong”’ - quote of Robin Milner,
one of the developers of the algorithm this talk aims to introduce
you to.



Types and programming

But we’re interested in software development for the time being.

I Can types help with program development? How?

I Can we get similar betefits using other tools?

Yes, types can help with development of programs. They bring
machine-checked guarantees that ensure consistency of the
program and eliminate certain classes of bugs.

‘Well-typed programs cannot “go wrong”’ - quote of Robin Milner,
one of the developers of the algorithm this talk aims to introduce
you to.



Improving software quality

Thus, types improve quality of the software that we produce.
However, there’s other well-known method of improving qualify of
the software - testing.

Let’s see how types compare against tests.



Improving software quality
Tests

Tests - executable code that lives together with the original
program and checks its behavior.

Tests assert ∃x : f (x)

Pro

I Can check arbitrary conditions

I Can write tests without changes the original code (provided
code is in testable form)

Cons

I Must be written by hand/generated by a machine (but
someone needs to write the generator!)

I Maintenance

I Needs coverage story to ensure that significant portion of the
program is tested



Improving software quality
Tests

Tests - executable code that lives together with the original
program and checks its behavior.

Tests assert ∃x : f (x)

Pro

I Can check arbitrary conditions

I Can write tests without changes the original code (provided
code is in testable form)

Cons

I Must be written by hand/generated by a machine (but
someone needs to write the generator!)

I Maintenance

I Needs coverage story to ensure that significant portion of the
program is tested



Improving software quality
Tests

Tests - executable code that lives together with the original
program and checks its behavior.

Tests assert ∃x : f (x)

Pro

I Can check arbitrary conditions

I Can write tests without changes the original code (provided
code is in testable form)

Cons

I Must be written by hand/generated by a machine (but
someone needs to write the generator!)

I Maintenance

I Needs coverage story to ensure that significant portion of the
program is tested



Improving software quality
Types

Type - naively, a set of values

Type checking - syntactic method of ensuring consistency of the
program by classifying program constituents by types of values
they produce

Types assert ∀x : f (x)



Improving software quality
Types, continue

Types assert ∀x : f (x)

Pro

I Prove things regardless of value

I Make illegal states unrepresentable => profit

I Has unlimited coverage - any value of particular type will do if
typechecker accepts your function

I No need to run the program

Cons

I Testing sophisticated assertions, like “function always
produces even integers”, requires specialized types and, likely,
changes to the soucre code

I Proving assertions not encoded in current types may require
significant changes to the source code



Improving software quality
Types, continue

Types assert ∀x : f (x)

Pro

I Prove things regardless of value

I Make illegal states unrepresentable => profit

I Has unlimited coverage - any value of particular type will do if
typechecker accepts your function

I No need to run the program

Cons

I Testing sophisticated assertions, like “function always
produces even integers”, requires specialized types and, likely,
changes to the soucre code

I Proving assertions not encoded in current types may require
significant changes to the source code



Improving software quality
Types, continued

While testing requires writing auxiliary code that tests the original
program, introducing types into program almost certainly involves
modifications of the original program to make it typecheck.

Some of the costs of introducing types are alleviated by type
inference:

I Must annotate program with types

I Must maintain annotations when program changes



Improving software quality
Type inference

Some of the costs of introducing types are alleviated by type
inference:

I Must annotate program with types

I Must maintain annotations when program changes

Type inference - automated process of assigning types to the
program, guided by the program structure.

One of the famous algorithms for type inference is the
Damas-Hindley-Milner algorithm.



The Damas-Hindley-Milner algorithm
A bit of history

History: discovered independently by mathematician Roger Hindley
in 1969 and computer scientist Robin Milner in 1978. Robin Milner
used the algorithm in the programming language of his own
development, named ML, short for Meta Language.

Third surname in the algorithm name is due to Louis Damas, who
contributed a close formal analysis and proof of the method in his
PhD thesis.



The Damas-Hindley-Milner algorithm
Interesting properties

The algorithm works with sufficiently expressive type system and
guarantees inference for any program.

I The algorithm is complete - it can infer type of any
syntactically valid programs

I The algorithm infers most general type, also called the
principal type

I Time complexity is exponential, i.e. O(2n), in the size of the
processed term, but algorithm is nonetheless widely used in
programming language implementations. Exponential
processing time is triggered by pathological programs that are
never written by hand.



Preliminaries - expression language
Intro

The language we’re inferring types for is pretty minimalistic, yet
expressive. It has following forms

I constants

I if-expressions

I binary primitives: addition, multiplication, equality comparison

I variables

I function application

I lambda abstraction (unnamed functions)

I let-expressions

I recursive let-expressions



Preliminaries - expression language
Sample programs

I 0, 1, true

I 1 + 2 · 3
I λx . x + 2

I λf x . f (x) == 0

I λx . let y = x · x in y · y
I letrec f = λn . if n == 0 then 1 else n · f (n + (−1)) in f (5)



Preliminaries - type system
Atomic types

The algorithm deals with expressive type system that we should
introduce first. As basic building blocks we have atomic types.

Atomic types - primitive types available in every programming
language, e.g. booleans, integers, strings, etc.



Preliminaries - type system
Composite types

Next we have means of combining atomic types to get new types.

Composite types - types defined inductively over other types. For
example, functions are composite type - they have argument and
result. We denote functions as

is even : int → bool



Preliminaries - type system
Parametric polymorphism

Our types can have universally quantified variables in them. E.g.
function that takes two arguments and returns first will have type

compose : ∀α β γ . (β → γ)→ (α→ β)→ α→ γ

We are free to use any type in place of α, β and γ, provided these
variables are substituted to the same value everywhere in
polymorphic type, e.g. using substitutions

α 7→ int, β 7→ bool, γ 7→ (int→ int)

we can obtain

compose : (bool→ (int→ int))→ (int→ bool)→ int→ (int→ int)



Preliminaries - type system
Parametric polymorphism

Parametricity allows to generalize functions and make them work
over any types. Not all function can be generalized. For example,
given function

f : int→ int→ int

f = λx y . y + y

we may generalize first argument to arbitrary type because it’s not
used.

However, we must leave second argument as-is because it’s used as
a number.



Preliminaries - type system
Parametric polymorphism

In order to account for parametric polymorphism our types can
have variables in them.



Preliminaries - type system
Type schemes

So, types can be generalized up to some point. The most general
form of a type is called principal type. The Damas-Hindley-Milner
algorithm is guaranteed to find pricipal type, if one exists.



The Damas-Hindley-Milner algorithm
Standard notation

The standard notation to describe typing rules is natural deduction
due to Gerhard Genzen.

Example:

All men are mortal Socrates is man
Socrates is mortal

A→ B A [Modus Ponens]
B

General form:

Assumption1 Assumption2 . . .
[Rule name]

Conclusion



The Damas-Hindley-Milner algorithm
Standard notation

The standard notation to describe typing rules is natural deduction
due to Gerhard Genzen.

Example:

All men are mortal Socrates is man
Socrates is mortal

A→ B A [Modus Ponens]
B

General form:

Assumption1 Assumption2 . . .
[Rule name]

Conclusion



The Damas-Hindley-Milner algorithm
Constants - booleans

The algorithm is defined inductively over syntax tree of the
program. Each construct gets its own rule.

Constants have no assumptions

[Cst-true]
Γ ` true : bool

[Cst-false]
Γ ` false : bool

Funny Γ ` notation means ‘in the environment Γ’.



The Damas-Hindley-Milner algorithm
Constants - integers

Integer constants have no assumptions either

n is integer
[Cst-integer]

Γ ` n : int



The Damas-Hindley-Milner algorithm
If expressions

If expressions require that condition to have boolean type and
branch types must match.

Γ ` c : bool Γ ` t : α Γ ` f : α [Expr-if-then-else]
Γ ` if c then t else f : α



The Damas-Hindley-Milner algorithm
Binary primitives

Addition, multiplication and equality work over numbers.

Γ ` a : int Γ ` b : int [Expr-add]
Γ ` a + b : int

Γ ` a : int Γ ` b : int [Expr-mul]
Γ ` a · b : int

Γ ` a : int Γ ` b : int [Expr-eq]
Γ ` a == b : int



The Damas-Hindley-Milner algorithm
Variables

Variables cannot be typed by itself, they get their meaning from
the context - the environment Γ.

(v , τ) ∈ Γ
[Expr-var]

Γ ` v : τ



The Damas-Hindley-Milner algorithm
Example

We’re given environment Γ = [(x , int)].

Let’s find type of expression 1 + x .

Γ ` 1 + x : int



The Damas-Hindley-Milner algorithm
Example

We’re given environment Γ = [(x , int)].

Let’s find type of expression 1 + x .

Γ ` 1 : int Γ ` x : int [Expr-add]
Γ ` 1 + x : int



The Damas-Hindley-Milner algorithm
Example, continued

We’re given environment Γ = [(x , int)].

Let’s find type of expression 1 + x .

1 is integer
[Cst-integer]

Γ ` 1 : int Γ ` x : int [Expr-add]
Γ ` 1 + x : int



The Damas-Hindley-Milner algorithm
Example, continued

We’re given environment Γ = [(x , int)].

Let’s find type of expression 1 + x .

1 is integer
[Cst-integer]

Γ ` 1 : int

(x , int) ∈ Γ
[Expr-var]

Γ ` x : int [Expr-add]
Γ ` 1 + x : int



The Damas-Hindley-Milner algorithm
Function application

Function application ensures that only function are applied. In
addition, it checks that function is applied to the correct argument.

Γ ` f : α→ β Γ ` x : α
[Expr-app]

Γ ` f (x) : β



The Damas-Hindley-Milner algorithm
Lambda abstraction

Lambda abstraction ensures that it’s body type-checks in the
extended environment, where argument is bound.

Γ, x := α ` e : β
[Expr-lam]

Γ ` λx . e : α→ β



The Damas-Hindley-Milner algorithm
Specialiation

A special rule is available for specializing types schemes.

Γ ` e : α α v β
[Expr-spec]

Γ ` e : β

The v relation denotes when one type is an instance of another,
e.g. (int→ int) v (α→ α)



The Damas-Hindley-Milner algorithm
Generalization

Generalization allows to add quantification over variables not
captured by the context.

Γ ` e : α β 6∈ Γ
[Expr-gen]

Γ ` e : ∀β . α



References

I Programming and Programming Languages - Krishnamurthi
S., Lerner B., Politz J. G.

I Wikipedia articla - Hindley-Milner type system

http://papl.cs.brown.edu/2016/
http://papl.cs.brown.edu/2016/
https://en.wikipedia.org/wiki/Hindley\OT1\textendash Milner_type_system


Thank you!

Questions?



Thank you!

Questions?


	Introduction
	Types
	Types and programming
	Improving software quality
	The Damas-Hindley-Milner algorithm
	Preliminaries - expression language
	Preliminaries - types
	Standard notation


